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angle of opposite sign. It is known that this setup ensures automatic improvement of the

bare K0-K
0

operator matrix element and multiplicative renormalization of the ∆S = 2

operator, at the price of breaking the K0-K
0

mass degeneracy by discretization effects. As

a result, two dominant systematic errors of the BK determination with Wilson fermions

are kept under control. With the Clover term included in the fermion action, we perform a

feasibility study and find, in the quenched approximation, a significant improvement of the

scaling behaviour of BK, compared to earlier standard tmQCD determinations. Moreover,

we study in detail the K0-K
0

mass splitting that characterizes this approach and confirm

that, in the presence of the Clover term, it is greatly reduced in a maximally twisted theory.
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1 Introduction

The bag parameter of neutral K-meson oscillations BK, has been the object of many lattice

QCD computations. Several discretizations of lattice fermions have been implemented for

this purpose. For the most recent quenched result see ref. [1]. Attention has now shifted

to unquenched estimates; see ref. [2] for a recent review.

The Wilson fermion results of BK are normally the least accurate, due to a limited

control of two sources of systematic error:

1. Loss of chiral symmetry causes the relevant ∆S = 2 four-fermion operator to mix,

under renormalization, with four other operators of the same dimension and differ-

ent chiral representation [3]. In lattice discretizations which do not violate chiral

symmetry this operator is multiplicatively renormalizable.

2. Discretization effects of the BK estimate at finite lattice spacing are O(a); with

staggered and Ginsparg-Wilson fermions they are O(a2). The traditional remedy

of Symanzik improvement is not viable here, because of the large number of higher

dimensional O(a) counterterms required.

The first of these problems has been dealt with in ref. [4], by using Ward identities,

and in refs. [5, 6], by implementing twisted Wilson fermions [7]. In the latter case, the

lattice fermion action consists of a twisted up-down fermion doublet (tmQCD) and a stan-

dard (untwisted) Wilson strange fermion. A second possibility, valid only in the quenched

approximation, is that of a tmQCD discretization of a degenerate down-strange doublet.

The lack of mixing with other operators in both tmQCD variants is achieved through the

mapping of the usual, parity-even ∆S = 2 operator to its parity-odd counterpart, which

is known to be multiplicatively renormalizable, even with Wilson fermions [8, 9]. Both

formalisms have been applied in refs. [5, 6], combined with the Schrödinger functional

renormalization and RG-running of ref. [10].

– 1 –
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In order to implement O(a) improvement, without the use of Symanzik counterterms,

one must ensure that all flavours are regularized in a tmQCD framework at maximal twist.

In other words, the twist angle for all quark flavours must be tuned to ±π/2, while the

mapping from parity-even to parity-odd ∆S = 2 operator must be preserved. As discussed

in ref. [11] this is not possible in the standard tmQCD formalism. A way round this

problem was provided in ref. [12], by using somewhat different regularizations for sea and

valence quarks. The former may be standard tmQCD, while the latter is the so-called

Osterwalder-Seiler variant of tmQCD. Each valence quark is maximally twisted to ±π/2.

However, unlike in standard tmQCD, the valence flavours are not combined into isospin

doublets. The four-fermion operator consists of four distinct, maximally twisted valence

flavours, three of which have twist angle with the same sign (say, +π/2) while the fourth

twist angle has the opposite sign (say, −π/2). This combination of valence quarks ensures

that the ∆S = 2 operator of interest is multiplicatively renormalizable and its K0 − K
0

matrix element is automatically improved; the same is true for BK.

It is not surprising that a price has to be paid for these advantages. In the setup de-

scribed above, the K0-meson consists of a strange/down valence quark-antiquark pair with,

say, the same twist angle, while the K
0
-meson has a pair with opposite twist angles. This

means that the two mesons have (pseudoscalar) masses which differ by O(a2) discretization

effects. Although in principle this mass splitting vanishes in the continuum limit, it may

be quite sizeable at finite lattice spacing. In the quenched approximation such effects have

indeed been studied in the past (cf. refs [13–15]), being indirect manifestations of flavour

symmetry breaking by tmQCD.

In this work we have also performed a similar study of such flavour symmetry breaking

effects for the K-meson mass mK and decay constant fK. A comparison of our results with

those of refs. [13, 14] indicates that the presence of the Clover term in the action greatly

reduces such flavour breaking systematics, in accordance with the findings of an earlier

study [15]. Moreover, we find that the scaling of BK with the lattice spacing is significantly

improved, if compared to the previous standard tmQCD quenched studies of refs. [5, 6].

2 Twisted and Osterwalder-Seiler valence quarks at maximal twist

The setup of our formalism follows very closely that of ref. [12]. Each valence quark field

qf (the subscript labels flavour, qf = u, d, s, . . .) is discretized by a fermionic action of

the form

Sf = a4
∑

x

qf (x)
[

Dw +mf + iγ5µf

]

qf (x) , (2.1)

where Dw is the standard Wilson-Dirac fermion matrix with a Clover term. The Wilson

plaquette action is the regularization of the pure gauge sector of the theory. In this work all

flavours are degenerate; this is only a matter of choice. As our simulations are performed

in the quenched approximation, we will ignore issues concerning the lattice regularization

of the sea quarks; see [12] for a related discussion.

Let us consider quark bilinear operators with distinct flavours. We distinguish two

cases, depending on the relative sign of the twisted mass terms (or equivalently, the twist
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angle) of these flavours. For example, the pseudoscalar density

P tm
ds (x) = d̄(x) γ5 s(x) (with µd = −µs) (2.2)

is said to be of “twisted mass” (tm) type, if the corresponding twisted mass terms have

opposite signs (i.e. µd = −µs). In this case the two flavours may be grouped in a doublet,

with a mass term of the form iµγ5τ3, corresponding to the standard tmQCD formalism (τ3
is the Pauli isospin matrix). A second possibility is that of µd = µs; this will be referred

to as the Osterwalder-Seiler (OS) case [16]. The pseudoscalar density is then denoted by

POS
ds (x) = d̄(x) γ5 s(x) (with µd = µs) . (2.3)

Analogous definitions hold for other quark bilinear operators. The OS discretization is only

applicable to valence quarks. Sea quarks, if regularized by the tmQCD lattice action, must

be organized in doublets, with a flavour non-singlet twisted mass term iµγ5τ3, in order to

avoid the generation of an unwanted θ-term. The implementation of OS valence flavours is

a mixed action formulation. Inevitably, in full (unquenched) QCD this introduces unitarity

violation at finite lattice spacing.

The specific continuum operators of interest to us are Pds(x) = d̄(x)γ5s(x) and

Aµ,ds(x) = d̄(x)γµγ5s(x). As shown in ref. [7], once the lattice theory is renormalized

in a mass-independent renormalization scheme, such quantities are related, up to cutoff

effects, to those of the lattice twisted theory through the quark field chiral rotations1

ψcont(x) = exp

[

i

2
γ5τ3α

]

[ψ(x)]R ψ
cont

(x) = [ψ(x)]R exp

[

i

2
γ5τ3α

]

; (2.4)

the phase α is the so-called twist-angle, defined through tan(α) = µR/mR. This of course

refers to the standard tmQCD formulation, with an isospin quark doublet ψ and a twisted

mass term of the form iµψγ5τ3ψ. For the case under consideration, with a distinct ac-

tion (2.1) for each flavour qf , the corresponding rotations of the valence quark fields are

qf (x)cont = exp

[

i

2
γ5αf

]

[qf (x)]R q̄f (x)cont = [q̄f (x)]R exp

[

i

2
γ5αf

]

, (2.5)

where the sign of the phase αf is that of the corresponding mass term µf . In order to

ensure automatic improvement, we consider the case of maximal twist (αf = ±π/2), for

which the above chiral rotations induce the following relations for the two-fermion operators

under consideration:

P cont
ds = [P tm]R = ZPP

tm
ds (2.6)

Acont
ν,ds = −i[V tm

ν,ds]R = −iZV V
tm
ν,ds (2.7)

P cont
ds = i[SOS]R = iZSS

OS
ds (2.8)

Acont
ν,ds = [AOS

ν,ds]R = ZAA
OS
ν,ds . (2.9)

1Our notation is the following: the superscript “cont” denotes continuum quantities, while [· · · ]R stands

for lattice (re)normalized quantities, corresponding to either tm or OS discretization.
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All such relations, understood to be shorthand expressions for equations between correla-

tion functions (or matrix elements) involving these operators, are valid up to discretiza-

tion effects.

Maximal twist is achieved by tuning the standard mass parameter m0 to its critical

value mcr (with corresponding value κcr of the hopping parameter). There are several ways

of doing this. A popular procedure consists in choosing a two-point correlation function

which in the continuum violates parity and flavour symmetry and must therefore vanish.

Thus, at fixed µ, the point m0 = mcr(µ) is determined, for which the bare correlation

function vanishes. Finally, the critical mass mcr is found by extrapolating mcr(µ) to µ = 0

(unless the smallness of µ renders the extrapolation unnecessary). For details see ref. [17].

This procedure, based entirely on a tmQCD setup, ensures the absence of O(a2k) discretiza-

tion effects (with k integer) in the determination of mcr, while O(a) effects are present. On

the other hand, physical quantities like hadronic masses and matrix elements are automat-

ically O(a)-improved; more precisely all O(a2k+1) discretization effects are absent.

In the present work, we follow a very different approach, described in detail in

refs. [5, 6]. It consists in using the standard Schrödinger functional estimate of mcr, by

requiring the vanishing of the PCAC quark mass, as in ref. [18]. This procedure uses stan-

dard (non-twisted) Wilson fermions, thus obtaining an explicitly µ-independent estimate

of mcr. However, in order for this mcr to be O(a)-improved, both the fermionic action and

the axial current in the PCAC relation must have O(a) Symanzik-counterterms. Therefore

the non-perturbative estimates of cSW and cA, determined with standard Wilson fermions

are essential in this procedure. With mcr thus obtained in a non-twisted, improved Wilson

fermion setup, we compute hadronic masses and matrix elements in a maximally twisted

framework. This approach has also been adopted in ref. [15], with lattices having periodic,

rather than Schrödinger functional, boundary conditions. In that work, a detailed com-

parison is made, at β = 6.0, between pseudoscalar masses and decay constants (of the tm

variety), obtained with the two estimates of κcr described above.

An important consequence, shared by these methods of tuning to maximal twist, is

that the so-called “chirally enhanced” discretization effects of the form a2/m2
π, present in

lattice correlation functions of fermion multi-local operators, are reduced to a2×a2/m2
π; cf.

ref. [17]. This is however of little relevance to our results obtained close to the K-meson

mass region, i.e. far from the chiral limit.

3 Results

We performed quenched simulations at three values of the gauge coupling, namely β =

6.0, 6.1, 6.2. At each coupling we have tuned the degenerate quark masses aµd = aµs to a

couple of values which are close to half the strange quark mass, so as to simulate charged

K-mesons with degenerate flavours. In practice this entails tuning the twisted mass values

so as to obtain pseudoscalar meson masses close to that of the physical Kaon. The values

of κcr, used in the simulations in order to achieve maximal twist, are collected in table 3 of

ref. [6]. We use the renormalization constants, improvement coefficients and the ratio r0/a

– 4 –
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β a
2r0

(L, T)
[xmin

0

2r0
,

xmax
0

2r0

]

Nmeas aµd = aµs dataset

6.0 0.0931 (24, 48) [1.30 , 3.17] 100 0.0135 I

6.0 0.0931 (24, 48) [1.30 , 3.17] 100 0.0115 II

6.1 0.0789 (24, 60) [1.26 , 3.47] 100 0.0125 I

6.1 0.0789 (24, 60) [1.26 , 3.47] 100 0.0110 II

6.2 0.0677 (32, 72) [1.35 , 3.52] 50 0.0105 I

6.2 0.0677 (32, 72) [1.35 , 3.52] 50 0.0090 II

Table 1. Details of the runs for three values of the gauge coupling.

as collected in appendix A of ref. [5]. Physical quantities are usually expressed in units of

r0 in the present work [19].

The details of our simulations are listed in table 1. The lattice size is L3 × T with

standard Schrödinger functional boundaries. The lattice calibration, expressed in terms of

a/2r0, is that of ref. [5]. In the table we also show the range (in units of x0/2r0) for which

the ground state of our correlation functions (i.e. the K-meson) has been isolated.

3.1 Comparison of discretization effects between tm and OS quantities

All observables computed in this work are obtained from the large time asymptotic limit

of operator correlation functions with Schrödinger functional boundary conditions. The

notation is standard, following closely that adopted e.g. in ref. [5]. For instance, fA (f ′
A
)

denotes the Schrödinger functional correlation function between a fermionic operator A0 in

the bulk and a pseudoscalar boundary operator ζ̄sγ5ζd at time-slice x0 = 0 (x0 = T ). All

such correlation functions are properly (anti)symmetrized in time, when used to extract

effective pseudoscalar masses and decay constants. These quantities (as well as BK in

subsection 3.2) are obtained at large time-separations from the boundaries, in order to avoid

contamination from higher excited states. The discretization effects from the boundaries

are O(g2
0 a); see ref. [20]. Since the hadron masses and weak matrix elements we are

interested in are computed at asymptotically large times from the boundaries, these effects

do not spoil O(a) improvement. Hence, O(a) discretization effects from the boundaries

may be considered negligible.2

2This claim, typical of ALPHA collaboration simulations, has been addressed in ref. [21]. From eqs.

(2.11)-(2.15) of the above work, it is deduced that these boundary effects reside in the coefficients ηπ

X

and η0

X of the excited states’ corrections, which decay exponentially. The fact that their contribution is

small has been numerically demonstrated in ref. [22] where detailed scaling tests have been performed at

intermediate physical volumes (L ≈ 0.75 fm and T ≈ 1.5 fm). We are working at larger physical volumes

(L ≈ 2 fm and T ≈ 4 fm) where these effects are further suppressed.
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β dataset r0M
tm r0M

OS RM in %

6.0 I 1.255(5) 1.346(8) 15

6.0 II 1.169(5) 1.267(9) 17

6.1 I 1.295(6) 1.349(8) 8

6.1 II 1.222(6) 1.279(8) 9

6.2 I 1.268(8) 1.301(10) 5

6.2 II 1.182(8) 1.217(10) 6

Table 2. Pseudoscalar masses of tm and OS type and their mass splitting as defined in Eq (3.2).

We have measured pseudoscalar effective masses aM(x0), both in the tm and

OS framework:

aM tm(x0) =
1

2
ln

[

f tm
V

(x0 − a)

f tm
V

(x0 + a)

]

; aMOS(x0) =
1

2
ln

[

fOS
A

(x0 − a)

fOS
A

(x0 + a)

]

. (3.1)

In table 2 we show the results of the pseudoscalar meson masses from both regularisations.

Recall that the physical value of the Kaon mass in units of r0 is r0MK = 1.2544. Therefore,

for all three β-values, the K-meson decay constant FK and the bag parameter BK discussed

below, are obtained through short “interpolations” between two points. We also show in

table 2 that the relative mass splitting, defined by

RM =
(r0M

OS)2 − (r0M
tm)2

(r0M tm)2
, (3.2)

decreases with decreasing lattice spacing. This is a clear evidence that the mass splitting

is a discretisation effect.

In order to compare our results to those of other collaborations [13–15], we consider

the pseudoscalar meson mass splitting in units of r0:

∆(r20M
2) ≡ [r0M

OS]2 − [r0M
tm]2 . (3.3)

The tm-OS pseudoscalar mass splitting may be affected by two factors: (i) the presence of

the Clover term and (ii) the way κcr is determined in order to ensure maximal twist. We

first recall the different choices of fermion action and κcr, made in refs. [13–15]:

• Both refs. [13, 14] have data obtained with a maximally twisted Wilson action (with-

out a Clover term) but implement different methods for computing κcr. In particular,

ref. [13] uses two methods, namely the PCAC relation for maximally twisted quarks

(yielding an “optimal” κcr) and the vanishing of the pseudoscalar meson mass in the

standard (untwisted) theory. On the other hand the authors of ref. [14] choose to tune

κcr through the vanishing of the parity-odd correlation function 〈V cont(x)P cont(0)〉,

– 6 –
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Figure 1. Square-mass splitting between tm and OS pseudoscalar mesons, as a function of the tm

pseudoscalar meson mass: (a) Comparison between our results and those of ref. [13]; the latter are

obtained using the PCAC determination of κcr. (b) Comparison between our results and those of

ref. [14].
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(a/2r
0
)
2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

∆(
r 02  M
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Ref. [13]

Ref. [14]

this work

Figure 2. Square-mass splitting between tm and OS K-mesons, as a function of the lattice spacing

squared. The data of ref. [13], displayed here, are obtained using the PCAC determination of κcr.

corresponding to another definition of an “optimal” κcr. A further difference is that

in ref. [14], the values of κcr(µ), computed at each twisted mass, are not extrapolated

to µ→ 0.

• In ref. [15] the Clover term is included in the fermion action, just like in the present

work. Their determination of κcr is based on the PCAC relation, evaluated in the

– 7 –
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standard Wilson theory (i.e. zero twist) with periodic boundary conditions, at large

pseudoscalar masses, extrapolated to the chiral limit. On the other hand, our κcr

determination is based on the PCAC relation with Schrödinger Funtional boundary

conditions, extrapolated to the chiral limit from small masses.3 Both estimates are

O(a)-improved.

Comparisons between results of these works are mostly limited to pseudoscalar mesons

in the region of MK . Pseudoscalar masses in the lighter mass range may be subject to finite

volume effects (e.g. L = 163 at β = 6.0), while those related to heavier masses are subject

to larger discretization errors. A close look at the details of these works suggests that the

tm pseudoscalar masses in the MK range agree reasonably well, while the OS ones do not.

Thus any discrepancies in ∆(r20M
2) are due to the latter mass. We may therefore conclude

that these works indicate that the pseudoscalar mass M tm is weakly dependent on the

presence or absence of a Clover term and/or the way maximally twist is implemented.

Next, we examine the influence of κcr in the evaluation of MOS and consequently of

∆(r20M
2). Our conclusions may be summarized as follows:

1. The results of ref. [13], obtained with two choices of κcr, indicate that, for the coarser

lattices, these quantities are affected by the way κcr is determined.

2. The comparison made in ref. [14], between their MOS and those of ref. [13], obtained

with the PCAC determination of κcr, also shows discrepancies (cf. figure 1 of ref. [14];

see also our figures 1, 2). Again the choice of κcr affects MOS and ∆(r20M
2).

3. We observe a better agreement between ∆(r20M
2) of ref. [14] and that of ref. [13],

obtained with the pseudoscalar determination of κcr.

4. From figure 5 of ref. [15], we estimate that at the K-meson region, ∆(r20M
2) ∼ 0.27

(for β = 6.0), while in our computations we find ∆(r20M
2) ∼ 0.25.

The good agreement of the latter estimates suggests that once the Clover term is included

in the action and an O(a)-improved κcr is used to tune to maximal twist, the tm-OS

pseudoscalar mass splitting is only mildly affected by the details of the κcr determination.

Conversely, it appears that the O(a) effects in the “optimal” determination of κcr (with

a Wilson action without a Clover term) may somehow induce large O(a2) effects in MOS

and consequently in ∆(r20M
2).

We now investigate the direct influence of the Clover term in the mass splitting

∆(r20M
2). In figure 1 we plot our data against those of refs. [13, 14]. The mass split-

ting of our results is significantly smaller.4 We attribute this to the inclusion of the Clover

term in the action. This effect, already seen in ref. [15] at β = 6.0, is confirmed here

3In our simulations, the twisted mass angle, measured from the ratio ∂0f
tm

V /∂0f
tm

A , varies between

870
− 900.

4In refs. [13, 14] the pseudoscalar masses aM tm and aMOS are tabulated. From these we can easily

compute ∆(r2
0M

2). The error on the latter quantity has been read off from figure 2 of ref. [13] and figure 3

of ref. [14]. This rough error estimate is adequate for the present qualitative comparison with our data.
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for more lattice spacings. As the data of refs. [13, 14] clearly indicate, this splitting de-

pends weakly upon the quark mass values. We expect a similarly weak mass dependence

in our case.

In figure 2 we plot ∆(r20M
2) against the lattice spacing squared, for the present work

and for refs. [13, 14]. In all cases this cutoff effect is decreasing with the lattice spacing.

Contrary to expectations, there is no clear evidence for its vanishing in the continuum

limit.5 This is probably due to the fact that we only have results at three lattice spacings

for each case. Moreover, our lattices are probably too coarse to reveal the vanishing of

∆(r20M
2) in the continuum limit.6

Finally, we point out that this mass splitting has been recently studied in an un-

quenched Nf = 2 framework, with a maximally tmQCD action without a Clover term;

see ref. [23]. In this preliminary work, pronounced RM values of up to about 50% have

been reported.

A similar analysis is performed for the pseudoscalar meson decay constants. In the

Schrödinger functional framework they are obtained from the axial current correlation

functions fAR
, properly normalized by the boundary-to-boundary correlation function f1;

see [21] for details. For the maximally twisted tm and OS cases under investigation, the

specific expressions for the decay constants F tm and FOS are (in the large-time asymp-

totic regime):

F tm ≈ 2(M tmL3)−1/2 exp[(x0 − T/2)M tm]
−iZV f

tm
V

(x0)
√

f tm
1

, (3.4)

FOS ≈ 2(MOSL3)−1/2 exp[(x0 − T/2)MOS]
ZAf

OS
A

(x0)
√

fOS
1

. (3.5)

In practice the above quantities are obtained in the x0-range in which the pseudoscalar

effective masses have been extracted.

A further method for computing F is based on the PCVC relation, expressed in terms

of Schrödinger functional correlation functions:

−M tmZV f
tm
V

(x0) = 2iµf tm
P

(x0) . (3.6)

The corresponding decay constant is computed as

FPCVC ≈ −4
µ

M tm
(M tmL3)−1/2 exp[(x0 − T/2)M tm]

f tm
P

(x0)
√

f tm
1

. (3.7)

In table 3 we show our results for the pseudoscalar decay constants. These values are

in a general agreement with the corresponding estimates in tables 6 and 7 of ref. [6], but

5This contradicts the claim of ref. [13], where the mass splitting is shown to vanish in the continuum,

for lighter pseudoscalar massess. In this respect we wish to point out that the tm and OS pseudoscalars

were computed in that work with much bigger errors. Moreover, the L = 163, β = 6.0 results at the lightest

values of aµ may not be free of finite size effects. Thus we consider the conclusion of that work on the mass

splitting under consideration as not definitive.
6Most peculiarly, the vanishing of ∆(r2

0M
2) in the continuum appears to be supported by our data if

plotted against a4. The data is well fit either by a function of the form C0+C4a
4 or by one like C2a

2+C4a
4.
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β dataset r0F
PCVC r0F

tm r0F
OS

6.0 I 0.407(7) 0.411(6) 0.412(12)

6.0 II 0.397(6) 0.401(6) 0.408(13)

r0MK 0.407(6) 0.411(6) 0.412(12)

6.1 I 0.415(8) 0.419(8) 0.410(9)

6.1 II 0.407(8) 0.411(8) 0.404(10)

r0MK 0.411(8) 0.415(8) 0.407(10)

6.2 I 0.417(12) 0.420(11) 0.419(14)

6.2 II 0.408(11) 0.411(11) 0.412(14)

r0MK 0.416(11) 0.419(11) 0.418(14)

Table 3. Pseudoscalar decay constants obtained from PCVC, and the axial current of tm and OS

type. We also show the interpolations at the physical K-meson point.

the errors are bigger, due to reduced statistics.7 The principal observation is that F tm and

FOS are compatible within errors.

In figure 3, we extrapolate (linearly in a2) the three estimates of the decay constant de-

terminations to the continuum limit. The results thus obtained for fK are fully compatible.

In particular, we find

r0 F
PCVC
K = 0.424(21)

r0 F
tm
K = 0.427(21) (3.8)

r0 F
OS
K = 0.417(30)

which compares nicely with

r0 FK = 0.421(07) (ref. [6])

r0 FK = 0.408(13) (ref. [14])

r0 FK = 0.415(09) (ref. [24]) (3.9)

r0 FK = 0.410(11) (ref. [25])

3.2 Improved BK parameter

We now pass to the computation of the BK parameter, on the lines of ref. [12], which ensures

that the bare BK is automatically improved. The four-fermion operator of interest is

Qcont
V V +AA = [s̄γµd][s̄γµd] + [s̄γµγ5d][s̄γµγ5d] . (3.10)

7The quantities r0F
PCVC and r0F

tm have also been computed in ref. [6]. However these computations

had been performed at significantly heavier quark masses and extrapolated to the Kaon mass value. This

accounts for the 4% difference between these results and ours at β = 6.0; this difference decreases with

increasing β.
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Figure 3. Pseudoscalar decay constant, computed with three different methods, as a function of

the squared lattice spacing. (Symbols are slightly shifted for clarity.)

On the lattice, we discretize this operator as proposed in ref. [12]; i.e. it is expressed in

terms of current products made of both tm and OS type, at maximal twist:

Qtm−OS
V A+AV = [s̄γµd]

tm[s̄γµγ5d]
OS + [s̄γµγ5d]

tm[s̄γµd]
OS . (3.11)

Using the chiral rotations of eq. (2.5), we obtain the relation between the lattice and

continuum operators, up to discretization effects:

Qcont
V V +AA = [Qtm−OS

V A+AV ]R = ZV A+AVQ
tm−OS
V A+AV (3.12)

The main reason behind using this mixed tm-OS formalism is the fact that in this way

the BK matrix element, computed with (twisted) Wilson fermions, is both automatically

improved and multiplicatively renormalizable.

BK is obtained form the ratio

RBK
=

iZV A+AV F
tm−OS
V A+AV

(8/3)[iZV f tm
V ] [ZAf

′OS
A ]

, (3.13)

where F tm−OS
V A+AV is the Schrödinger functional correlation function with the four-fermion

operator of eq. (3.11) in the bulk and the usual boundary sources at the time edges.

Note that these sources are of tm type at time-slice x0 = 0 and of OS type at time-

slice x0 = T . Thus, away from the time boundaries, the correlation function F tm−OS
V A+AV

displays an asymptotic behaviour of the form exp[−M tmx0] exp[−MOS(T − x0)]. In order

to match this choice and cancel the exponentials, the denominator consists of a correlation

function f tm
V of the tm type, involving the x0 = 0 boundary, and a correlation function
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0
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G
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β=6.0, dataset I (shifted by +0.2)
β=6.1, dataset I (shifted by +0.1)
β=6.2, dataset I

Figure 4. The ratio RBRGI

K

as a function of time, for three values of the gauge coupling. The data

for β = 6.0 and 6.1 have been shifted for clarity. The horizontal lines indicate the BK averages and

the extension of the plateau.

f
′OS
A of the OS-type, involving the x0 = T boundary. The axial and vector currents in

these correlation functions are the corresponding tm and OS twisted versions of the axial

current; cf. eqs. (2.7), (2.9). In our analysis we have also considered the symmetric situation

with tm and OS sources exchanged and the denominator of the above equation adjusted

accordingly. The BK result quoted below is the average of the two estimates thus obtained.

The quality of our raw results for RBK
is shown in figure 4.

At large time separations from the boundary, the dependence of the bare BK esti-

mate on the lattice spacing, besides the standard logarithmic divergence, is characterized

by O(a2) discretization effects. This is due to the fact that all fermion propagators are

evaluated at maximal twist (i.e. we have the automatic improvement of ref. [12]). The

renormalization constant ZV A+AV is known non-perturbatively from ref. [10]. As it is

computed in the chiral limit but is not improved, it suffers from O(aΛQCD) discretization

effects. Our results show a very weak O(a) dependence of BK (see figure 5(b) below) and

indicate that this is not a source of sizable discretization effects.

In table 4 we list our BRGI
K estimates. The scaling of these results is to be compared

to the ones of refs. [5, 6]. We remind the reader that the latter had been computed in two

distinct frameworks: (i) the so-called π/2 case, consisting of a maximally twisted down

quark and a non-twisted strange one and (ii) the so-called π/4 case, in which down and

strange flavours were in the same isospin doublet with a twist angle π/4. Both frameworks

have quark flavours which are not maximally twisted and this implies that the results of

refs. [5, 6] are not improved.

In this respect, we wish to draw the reader’s attention to a subtlety related to the

– 12 –
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β dataset BRGI
K

6.0 I 0.772(10)(9)

6.0 II 0.753(12)(9)

r0MK 0.772(10)(9)(14)

6.1 I 0.762(12)(9)

6.1 II 0.746(13)(9)

r0MK 0.753(12)(9)(15)

6.2 I 0.758(12)(9)

6.2 II 0.742(13)(9)

r0MK 0.756(12)(9)(15)

Table 4. BRGI
K results of the present work. The errors are, in order of appearance: (i) statistical, (ii)

uncertainty due to the renormalization constants ZV A+AV , ZA and ZV , (iii) total error, obtained

by adding the first two in quadrature.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
a/2r

0

0.6

0.65

0.7

0.75
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0.85

0.9

0.95

1

B
K

R
G

I

tm π/2   (c
A

 included)

tm π/4   (c
A

 included)

tm π/2   (c
A

= 0)

tm π/4   (c
A

= 0)

C.L.      Ref. [6]

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
a/2r

0

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

B
K

R
G

I

this work  (c
A

 included)

this work  (c
A

 = 0) 

C.L.   linear fit in "a"  (this work)

C.L.   linear fit in "a
2
" (this work)

Figure 5. (a) Scaling behaviour of the BRGI
K results of refs. [5, 6] for: (i) the π/2 case with a cA

term (empty squares) and with cA = 0 (filled squares); (ii) the π/4 case with a cA term (empty

diamonds) and with cA = 0 (filled diamonds). (b) Scaling behaviour of the BRGI
K results from the

present work with cA = 0 (filled squares) and with a cA term (empty squares). Symbols have been

shifted for clarity. See the text for details on the continuum limit extrapolations (C.L.).

Symanzik improvement of the axial currents, ZA [fA + acA∂̃0fP ], in the denominator of

BK (∂̃0 is the lattice symmetrized partial derivative). In the formulation of refs. [5, 6],

the ratio RBK
contains the product of two axial currents in the denominator, each with

an improvement counterterm acA∂0P ; cf. eqs. (3.21), (3.22) and (3.23) of ref. [5]. In

these earlier works, the influence of this term in the scaling behaviour of BK was carefully

monitored. The result of this analysis is summarized in figure 5(a). Note that BRGI
K scales

much better when cA = 0 (i.e. when the BK denominator is not improved), than when it
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is tuned so as to eliminate O(a) effects from the axial current. In ref. [5] it was speculated

that this could be due to some cancellation between the discretization effects of the BK

numerator and denominator, which is spoilt once the cA term is switched on. Whatever

the reason, the data of figure 5(a) clearly indicate that O(a) effects influence significantly

the scaling behaviour of BK. The continuum limit value shown in this figure is the final

result quoted in ref. [6]. It has been obtained by a combined fit, linear in a/2r0, of the π/2

and π/4 data with a cA term in the denominator (which is the most conservative option).

In the present paper, the counterterm acA∂̃0f
′OS
P may be included in the definition

of the axial current correlation function in the denominator of RBK
. Note that due to

automatic improvement, this is now an O(a2) effect. In figure 5(b) we show our results,

plotted against the linear lattice spacing a/2r0. They are shown both for cA = 0 and for

non-zero cA, in order to monitor the influence of the relevant counterterm. The compati-

bility between the two sets of results in figure 5(b) indicates that, unlike the previous case,

the cA term does not spoil the good scaling properties of BK. Moreover, the almost flat

scaling behaviour may suggest that the O(aΛQCD) discretization effects of ZV A+AV , as well

as the O(µ2a2) effects of the K0 − K̄0 matrix element, are small. In the light of this we

have performed two continuum limit extrapolations, one linear in a and another linear in

a2. Both extrapolation results are shown in figure 5(b), for the cA = 0 data.

The linear fit of our BRGI
K data with respect to a gives the following continuum result:

BRGI
K = 0.706(65) (χ2/dof = 0.30)

while the linear fit with respect to a2 gives:

BRGI
K = 0.733(34) (χ2/dof = 0.26) .

Both results compare nicely with the published value: BRGI
K = 0.735(71) of ref. [6]. Our

error in the latter value is smaller because the extrapolation in a2 is shorter.

To recapitulate, at fixed lattice spacing, the result of ref. [6], suffers from O(a)

discretization effects which arise from several sources: (i) the renormalization constant

ZV A+AV ; (ii) the bare matrix element of the four fermion operator; (iii) the currents in

the denominator of RBK
, once we set cA = 0. The result of the present paper is only con-

taminated by the O(aΛQCD) discretization errors of the renormalization constant ZV A+AV ;

all other quantities are automatically O(a) improved. In order to obtain a fully improved

result, the O(a) effects in ZV A+AV need to be eliminated. This would require the compu-

tation of this renormalization constant in a suitably modified renormalization scheme, as

for example proposed in ref. [26] (in a Schrödinger functional setup, with chirally rotated

boundary conditions) or in ref. [23] (in a maximally tmQCD framework). Such computa-

tions are beyond the scope of this paper.

4 Conclusions

In this work we have addressed a couple of issues related to the proposal of ref. [12] for the

computation of BK in a tmQCD setup, using a four-fermion operator made of two tm-type
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quarks and two OS-type quarks, all maximally twisted. This ensures that the operator

is multiplicatively renormalizable and automatically improved. The price to pay is that

in this way the Kaon and anti-Kaon states of the weak matrix element 〈K
0
|O∆S=2|K0〉

are composed of different lattice quark field combinations (tm and OS) and thus are non

degenerate at finite lattice spacing.

We have performed a quenched study in order to address these issues. In particular, we

find that the inclusion of the Clover term in the fermionic action significantly reduces the

mass splitting between Kaon and anti-Kaon at finite lattice spacing. This result, already

observed in an earlier work at a single lattice spacing, has been confirmed by us for several

β-values. It should also be noted that in earlier studies, in which a Clover term was

not included in the action, this mass splitting, besides being much bigger than the one we

measure, was found to be significantly affected by the choice of non-perturbative procedure

for tuning the lattice theory to maximal twist. This does not appear to be the case once

an O(a) Symanzik-improved procedure, with a standard (untwisted) mass term, is used

to tune the hopping parameter to its critical value. We also confirm that this splitting

decreases as the continuum limit is approached.

The second objective of the present paper is the presentation of first results for BK, ob-

tained in this tm-OS setup. We have compared our results to the earlier ones of refs. [5, 6],

in which BK had been computed in a tmQCD setup, without maximal twist on all flavours

and thus without automatic O(a)-improvement. These results were rather sensitive to

discretization errors, as revealed by the dependence of BK on the Symanzik O(a) term of

the axial current at coarser lattice spacings. In the present work, bare matrix elements

are automatically O(a)-improved, leaving us only with O(aΛQCD) effects from the renor-

malization constant of the four-fermion operator. Our results display significantly better

scaling, compatible with an O(a2) behaviour.
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[9] A. Donini, V. Giménez, G. Martinelli, M. Talevi and A. Vladikas, Non-perturbative

renormalization of lattice four-fermion operators without power subtractions,

Eur. Phys. J. C 10 (1999) 121 [hep-lat/9902030] [SPIRES].

[10] ALPHA collaboration, M. Guagnelli, J. Heitger, C. Pena, S. Sint and A. Vladikas,

Non-perturbative renormalization of left-left four-fermion operators in quenched lattice QCD,

JHEP 03 (2006) 088 [hep-lat/0505002] [SPIRES].

[11] C. Pena, S. Sint and A. Vladikas, Twisted mass QCD and lattice approaches to the

∆(I) = 1/2 rule, JHEP 09 (2004) 069 [hep-lat/0405028] [SPIRES].

[12] R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions. II: four-quark operators,

JHEP 10 (2004) 070 [hep-lat/0407002] [SPIRES].

[13] XLF collaboration, K. Jansen et al., Flavour breaking effects of Wilson twisted mass

fermions, Phys. Lett. B 624 (2005) 334 [hep-lat/0507032] [SPIRES].

[14] A.M. Abdel-Rehim, R. Lewis, R.M. Woloshyn and J.M.S. Wu, Strange quarks in quenched

twisted mass lattice QCD, Phys. Rev. D 74 (2006) 014507 [hep-lat/0601036] [SPIRES].

[15] D. Becirevic et al., Exploring twisted mass lattice QCD with the clover term,

Phys. Rev. D 74 (2006) 034501 [hep-lat/0605006] [SPIRES].

[16] K. Osterwalder and E. Seiler, Gauge field theories on the lattice, Ann. Phys. 110 (1978) 440

[SPIRES].

[17] R. Frezzotti, G. Martinelli, M. Papinutto and G.C. Rossi, Reducing cutoff effects in

maximally twisted lattice QCD close to the chiral limit, JHEP 04 (2006) 038

[hep-lat/0503034] [SPIRES].
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